Kinetic Studies of Calixarene-based Cyclic and Non-cyclic 'Super-uranophiles'

Takeshi Nagasaki, Kazuhiko Kawano, Koji Araki and Seiji Shinkai*

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

The kinetic parameters for the binding of $UO_2^{2^+}$ to calixarene-based 'super-uranophiles', parasulphonatocalix[n] arenes (n = 5, 6 and 8: 1,) and their non-cyclic analogue, 3,5-bis{[2-hydroxy-3-(2-hydroxy-3-methyl-5-sulphonatophenyl)methyl-5-sulphonatophenyl]methyl}-4-hydroxybenzenesulphonate (2) have been evaluated at 25 °C and pH 10.40. The reaction of $UO_2^{2^+}$ and 2 is speeded up by a factor of 85 compared to that of $UO_2^{2^+}$ and 1₆.

The selective extraction of uranium from sea water has attracted extensive attention from chemists because of its importance in relation to energy problems. In order to design such a ligand that is capable of selective extraction of uranyl ion (UO_2^{2+}) , one faces a difficult problem: i.e. the ligand must strictly discriminate UO₂²⁺ from other metal ions present in great excess in sea water. It has been established that UO_2^{2+1} complexes adopt either a pseudoplanar pentacoordinate or hexacoordinate structure.¹ This suggests that a macrocyclic host molecule having a nearly coplanar arrangement of either five or six ligand groups would serve as a specific ligand for $UO_2^{2^+}$ (*i.e.*, as a uranophile).² Calixarenes are cyclic oligomers made up of phenol units.³ We recently found that calix[5]arene*p*-pentasulphonate (1_5) and calix[6]arene-*p*-hexasulphonate (1₆) have remarkably large, record-breaking stability constants $(K_{\text{uranyl}} = 10^{18.7-19.2} \text{ dm}^3 \text{ mol}^{-1})$ and selectivity factors $(K_{\text{uranyl}}/K_{\text{M}^{*+}} = 10^{10-17})$ in water.⁴ The results are attributed to the moderately rigid skeleton of calix[5]arene and calix[6] arene which can provide the pre-organized penta- and hexa-coordination geometry for the binding of UO_2^{2+} . A preliminary kinetic study on 1_6 indicated that the binding rate is relatively slow, the half-life at room temperature being ca. 1 h. This is supposed to be the sole defect of the calixarene-based uranophiles. What is taking so long? Rebek et al.⁵ found that the reaction rate for the binding of 18-crown-6 to Hg(CN)₂ or $Hg(CF_3)_2$ (linear guest cation) is very slow. As UO_2^{2+} is also a linear guest cation ($O=U=O^{2+}$), the slow binding rate may be a characteristic of a reaction between linear guest cations and cyclic host ligands. If so, this phenomenon would be attributed, as pointed out by Rebek et al.⁵ to the slow exo- to endocomplex (rotaxane-type complex) step which must experience a high-energy conformation in order to permit UO₂²⁺ to penetrate the calixarene ring [as in eqn. (1)]. As an attempt to remove this defect, we have designed a non-cyclic calixarene analogue 2 which does not necessarily experience such a highenergy conformation as an obligatory path and compared its equilibrium and kinetic parameters with those of 1_n (n = 5, 6and 8).

Preparations of 1_n have been described previously.^{4,6} Compound **2** was prepared by sulphonation of 2,6-bis{[2-hydroxy-3-(2-hydroxy-3-methylphenyl]methylphenyl]methylphenol.[†]

The product was identified as 2 by IR, ¹H NMR spectroscopy and elemental analysis.[‡]

The measurements were carried out at pH 10.40 (adjusted with carbonate buffer) and 25 °C. The stoichiometry for the uranyl complexes was studied by a continuous variation method. The stability constants ($K_{uranyl} = [UO_2^{2+} \cdot uranophile]/[UO_2^{2+}][uranophile])$ were evaluated by a displacement method (described in ref. 4). The reaction of uranophiles and $UO_2(CO_3)_3^{4-}$ in carbonate buffer solution was followed by monitoring the appearance of a new absorption band at 449 nm. Under the pseudo-first-order conditions ([uranophile] $\leq [UO_2(CO_3)_3^{4-}]$) the reaction obeyed first-order kinetics for up to three half-lives. Although the equilibrium reaction for eqn.

[†] This compound was prepared by de-*tert*-butylation of 2,6-bis-{[2-hydroxy-3-(2-hydroxy-3-methyl-5-*tert*-butylphenyl]methyl-5-*tert*butylphenyl]methyl}-4-*tert*-butylphenol. The methods used for de-*tert*butylation and sulphonation are similar to those used for the syntheses of 1_n .⁴

[‡] M.p. > 300 °C, yield 49%; IR (Nujol) v_{so}/cm^{-1} 1050, 1170; ¹H NMR (D₂O, internal standard DSS) δ 2.27 (6 H, s, CH₃), 4.05 and 4.07 (4 H and 4 H, s and s, ArCH₂Ar), 7.40, 7.42, 7.45, 7.48 and 7.51 (2 H each, all s, ArH) (Found: C, 36.5; H, 3.7%. Calc. for C₃₆H₂₉O₂₀S₅Na-7H₂O: C, 36.55; H, 3.66%).

Table 1 Stoichiometry, kinetic parameters and stability constants for the complexes of UO_2^{2+} and calizarene derivatives

 Calixarene	Stoichiometry ^{<i>a</i>} $UO_2^{2^+}$: uranophile	$k_{obs}^{\ b}/10^{-3} \text{ s}^{-1}$	$k_{\rm f}/{ m dm^3~mol^{-1}~s^{-1}}$	$k_{\rm r}/10^{-3}~{\rm s}^{-1}$	log K _{uranyl}
1,5	1:1	1.15	1.05	0.138	18.9°
1 ₆	1:1	0.111	0.0762	0.0504	19.2°
1 ₈	1:2	2.74 ^d	e	e	$18.7 (= \log K_1)^f$ 18.1 (= log K_2)^f
 2	1:1	9.38	2.13	7.13 <i>ª</i>	17.7

^{*a*} Determined by a continuous variation method at $[UO_2(CO_3)_3^{4-}] + [calixarene] = 1.34 \times 10^{-3} \text{ mol dm}^{-3}$. ^{*b*} Pseudo first-order rate constant at $[UO_2(CO_3)_3^{4-}] = 4.90 \times 10^{-3} \text{ mol dm}^{-3}$ in 0.030 mol dm⁻³ carbonate buffer. ^{*c*} Cited from ref. 4. ^{*d*} Since the reaction obeyed first-order kinetics, it is unlikely that k_{f1} (the pseudo first-order rate constant for the formation of the $UO_2^{2^+} \cdot \mathbf{1}_8$ complex) > k_{f2} [the pseudo first-order rate constant for formation of the $(UO_2^{2^+})_2 \cdot \mathbf{1}_8$ complex]. Thus, the possible kinetic situation is either $k_{f1} \approx k_{f2}$ or $k_{f1} < k_{f2}$. ^{*c*} The kinetic equation for the two-step $UO_2^{2^+}$ -binding, $UO_2(CO_3)_3^{4^-} + \mathbf{1}_8 \rightleftharpoons UO_2^{2^+} \cdot \mathbf{1}_8 + 3CO_3^{2^-}$ and $UO_2(CO_3)_3^{4^-} + UO_2^{2^+} \cdot \mathbf{1}_8 \implies (UO_2^{2^+})_2 \cdot \mathbf{1}_8 + 3CO_3^{2^-}$, is too complicated to determine k_f and k_r . ^{*f*} $K_1 = [UO_2^{2^+} \cdot \mathbf{1}_8]/[UO_2^{2^+}][\mathbf{1}_8]$ and $K_2 = [(UO_2^{2^+})_2 \cdot \mathbf{1}_8]/[UO_2^{2^+}][UO_2^{2^+} \cdot \mathbf{1}_8]$. These values were estimated by a computer simulation (non-linear least-squares method) of a plot of OD_{449} us. $[\mathbf{1}_8]$ at $[UO_2(CO_3)_3^{4^-}] = 1.11 \times 10^4$ mol dm⁻³ (constant), where ε_1 (= 1320 dm³ mol⁻¹ cm⁻¹ for $UO_2^{2^+} \cdot \mathbf{1}_8$) and ε_2 [= 2290 dm³ mol⁻¹ cm⁻¹ for $(UO_2^{2^+})_2 \cdot \mathbf{1}_8]$, which were needed for the simulation, were determined from the absorbances at $[UO_2^{2^+}] \ll [\mathbf{1}_8]$ and $[UO_2^{2^+}] \gg [\mathbf{1}_8]$, respectively. ^{*g*} k_r [CO₃^{2⁻}] (at $[CO_3^{2^-}] = 0.030$ mol dm⁻³) = 7.13 \times 10^{-3} s⁻¹. Thus, k_r [in eqn. (5)] = 0.238 dm³ mol⁻¹ s⁻¹.

Fig. 1 Plots of $k_{obs} vs. [CO_3^{2^-}]: 25 °C, pH 10.40$ with 0.030 mol dm⁻³ carbonate, $\mu = 0.15$, $[1_n \text{ or } 2] = 9.30 \times 10^{-5} \text{ mol } dm^{-3} [UO_2^{-1} (CO_3)_3^{4^-}] = 8.75 \times 10^{-4} \text{ mol } dm^{-3}$

Fig. 2 Plots of $k_{obs} vs. [UO_2(CO_3)_3^{4-}]: 25 \text{ °C}, pH 10.40 \text{ with } 0.030 \text{ mol} dm^{-3} \text{ carbonate}, \mu = 0.15, [1_n \text{ or } 2] = 4.00 \times 10^{-4} \text{ mol } dm^{-3}$

(2) is formally expressed by eqn. (3), the third-order dependence on the carbonate concentration is actually inconceivable. We thus determined k_{obs} as a function of $[CO_3{}^2{}^-]$. As shown in Fig. 1 { $[UO_2(CO_3)_3{}^4{}^-]$ is maintained constant}, k_{obs} for 2 showed a first-order dependence whereas that for 1_5 and 1_6 showed a zero-order dependence. This implies that in the $UO_2{}^2{}^+{}\cdot 2$ complex the non-cyclic chain surrounding the $UO_2{}^2{}^+$ ion is displaced bimolecularly by the nucleophilic attack of $CO_3{}^2{}^-$ whereas in the rotaxane-type $UO_2{}^2{}^+{}\cdot 1_5$ and $UO_2{}^2{}^+{}\cdot 1_6$ complexes the $UO_2{}^2{}^+$ ion is protected by the calixarene ring from nucleophilic attack by $CO_3{}^2{}^-$. The complexes feature unimolecular demetallation followed by association with $CO_3{}^2{}^-$. Thus, the equilibrium reaction for 1_5 and 1_6 is expressed by eqn. (4) and that for 2 by eqn. (5).

Plots of k_{obs} vs. $[UO_2(CO_3)_3^{4-}]$ are illustrated in Fig. 2. From the slope and the intercept one can determine k_f and k_r , respectively. The results are summarized in Table 1.

$$UO_2(CO_3)_3^{4^-}$$
 + uranophile $\frac{k_t}{k_r}$
 $UO_2^{2^+}$ ·uranophile + $3CO_3^{2^-}$ (2)

$$k_{\rm obs} = k_{\rm f} [\rm UO_2(\rm CO_3)_3^{4^-}] + k_{\rm r} [\rm CO_3^{2^-}]^3$$
 (3)

$$k_{\rm obs} = k_{\rm f} [{\rm UO}_2 ({\rm CO}_3)_3^{4^-}] + k_{\rm r}$$
 (4)

$$k_{\rm obs} = k_{\rm f} [\rm UO_2(\rm CO_3)_3^{4^-}] + k_{\rm r} [\rm CO_3^{2^-}]$$
 (5)

The stoichiometry in Table 1 establishes that 1_5 , 1_6 and 2 form a 1:1 $UO_2^{2^+}/calixarene$ complex, whereas 1_8 , having a large calix[8]arene ring, forms a 2:1 $UO_2^{2^+}/calixarene$ complex. The stability constants for $UO_2^{2^+} \cdot 1_8$ (K_1 and K_2 , respectively) are comparable with those for 1_5 and 1_6 . It is known that the calix[8]arene ring is more flexible than the smaller calixarene rings.³ Although the phenolic oxygens are not suitably arranged for coordination to $UO_2^{2^+}$, the flexibility would allow an induced-fit type complexation with $UO_2^{2^+}$. In contrast, K_{urany1} for non-cyclic 2 is somewhat smaller than those values for cyclic 1_8 .

As expected, the rate constants for non-cyclic 2 are greater than those for cyclic 1_n . Examination of kinetic parameters reveals that the rapid equilibration in 2 is not only due to the fast forward complexation rate but also due to the more enhanced reverse decomplexation rate: for example, k_f and $k_r[CO_3^{2-}]$ (at $[CO_3^{2-}] = 0.030 \text{ mol dm}^{-3}$) for 2 are greater by 28-fold and 141-fold, than k_f and k_r for 1_6 , respectively. This means that carbonate ligands in $UO_2(CO_3)_3^{4-}$ are easily replaced by noncyclic 2, but 2 in the $UO_2^{2+} \cdot 2$ complex is more easily replaced by carbonate ligands. The results establish that the reaction of 2 and UO_2^{2+} has a transition state much lower than those for 1_n and UO_2^{2+} . The difference is explained because non-cyclic 2 does not need to experience an energetically unfavourable *exo*- to *endo*-complex step as an obligatory path.

Surprisingly, compound 1_5 gave kinetic parameters much greater than those for 1_6 . Why are the kinetic parameters for 1_5 so peculiar? Previously, we found that in the binding of 1_5 to UO_2^{2+} four OH groups are dissociated at pH 6 and one OH group remains undissociated: at pH 9 the last OH group is dissociated to form the fully-saturated pentacoordinate complex. In contrast, six OH groups in 1_6 are all dissociated at pH 6. This suggests that the calix[5]arene ring *a priori* is distorted and in the binding to UO_2^{2+} the initial and the final state are both destabilized. This view explains well the relatively fast equilibration in 1_5 .

In conclusion, the present study demonstrated that non-cyclic 2 and calixarene 1_5 act as better uranophiles for experiments including dynamic processes (*e.g.*, solvent extraction, membrane transport, *etc.*). Thus, they may be more useful for extracting $UO_2^{2^+}$ from sea water.

References

- 1 R. Graziani and E. Forsellini, J. Chem. Soc., Dalton Trans., 1972, 2059 and references cited therein.
- 2 This approach has been investigated by a few groups: I. Tabushi, Y. Kobuke, K. Ando, M. Kishimoto and E. Ohara, J. Am. Chem. Soc., 1980, 102, 5948; I. Tabushi, Y. Kobuke and A. Yoshizawa, J. Am. Chem. Soc., 1984, 106, 2481; I. Tabushi, A. Yoshizawa and H. Mizuno, J. Am. Chem. Soc., 1985, 107, 4585; P. Fux, J. Lagrange and P. Lagrange, J. Am. Chem. Soc., 1985, 107, 5927.
- 3 For comprehensive reviews of calixarene chemistry see C. D. Gutsche, Acc. Chem. Res., 1983, 16, 161; C. D. Gutsche, Synthesis of Macrocycles: The Design of Selective Complexing Agents, eds. R. M. Izatt and J. J. Christensen, John Wiley & Sons, New York, 1987, p. 93.
- 4 S. Shinkai, H. Koreishi, K. Ueda and O. Manabe, J. Chem. Soc., Chem. Commun., 1986, 233; S. Shinkai, H. Koreishi, K. Ueda, T. Arimura and O. Manabe, J. Am. Chem. Soc., 1987, **109**, 6371.
- 5 J. Rebek, Jr., S. V. Luis and L. R. Marshall, J. Am. Chem. Soc., 1986, 108, 5011.
- 6 S. Shinkai, K. Araki, T. Tsubaki, T. Arimura and O. Manabe, J. Chem. Soc., Perkin Trans. 1, 1987, 2297.

Paper 1/02189C Received 18th March 1991 Accepted 9th May 1991